Ch. 4

PHYSICAL, CHEMICAL, & BIOLOGICAL PROPERTIES OF MUNICIPAL SOLID WASTE

 

4-1 Physical Properties of MSW

4-2 Chemical Properties of MSW

4-3 Biological Properties of MSW

4-4 Physical, Chemical, & Biological Transformations of Solid Waste

 

4-1 Physical Properties of MSW

l Specific Weight

¤@¡B  ¤z ÂZ¡G¤£¨ã¥Nªí©Ê¤Î¤j«¬¤§¼o±óª«¦p¹q¾¹¡B®a¨ãµ¥¡A©ö³y¦¨¤£¥¿½T¤§´ú©wµ²ªG¡A¬G»Ý¥ý¥h°£¡A¦A±N¤j«¬¤§¼o±óª«¤©¥H¯»¸H«á§¡¤Ã²V¦X¡C

¤G¡B  ³] ³Æ¡G¤wª¾­«¶q¤§0.1m3¤§¥ß¤èÅé¡]0.5¢õ¡Ñ0.5¢õ¡Ñ0.4¢õ °ª¡^ÅK²°¡]³Ì¦n¬°¤£Äÿû©ÎÁá¾N§÷½è¡^©Î¤ì²°¡C

¤T¡B  ¨B ÆJ¡G±N©ó²{³õ©Ò±o¤§¼Ë«~¸Ë¤J²°¤¤¡A©ó¤K¤Àº¡®É¡A¥Ñ¨â¤H´£¦ÜÂ÷¦a30cm¡A¥O¨ä¦Û¥Ñ¸¨¤U¡A¨Ï©U§£¿n¹ê¡A¦A¶ñº¡¼Ë«~¡A­«½Æ¤T¦¸¡A¯¯±oÁ`¶qW1 (kg)¡C

¥|¡B  ­p ºâ¡G³æ¦ì®e¿n­«¡]kg/m3¡^= (W1 ¡V W0) / V

W1:¸Õ¼Ë»P®e¾¹Á`­«(kg)

W0:®e¾¹­«(kg)

V:®e¾¹Åé¿n(0.1 m3)

l Moisture Content

¤ô¤À¡]¢H¡^¡×

W2= ¸Õ¼Ë­«

W3¡×°®­«

l Particle Size & Size Distribution

l Field Capacity¥Ð¶¡§t¤ô¶q

l Permeability of Compacted Waste

4-2 Chemical Properties of MSW

l Proximate Analysis

¤ô¤À¡B´§µo¤À¡B©T©wºÒ¡B¦Ç¤À

(¤@) ´ú©w¼Ë«~¤§§t¤ô¥÷

1.      ´ú¸Õ«e±N©XÁç¬~²b«á¡A¸m©ó°ª·Å¦Ç¤ÆÄl¤¤¡A¥H1,200¢JªÅ¿N30¤ÀÄÁ¡C

2.      ªÅ¿N«á­°§CÄl·Å¦Ü300¢J®É¡A±N©XÁç²¾¦Ü°®Àê¾¹§N«o³Æ¥Î¡A¨Ï¥Î«e¯¯­«¡C

3.      ¯¯¨ú¾A¶q¤§¼o±óª«¼Ë«~¦Ü0.001 g ¡]¬ù5 ~ 10 g¡^¡A¸m©ó¤W­z¤w¯¯­«¤§©XÁ礤¡A¥H105 ¡Ó1¢J¤§¯M½c°®Àê¤G¤p®É¡A¨ú¥X²¾¤J°®Àê¾¹¡A§N«o¦Ü«Ç·Å¡A¯¯­«¡C

4.      ­«ÂÐ¥H¤W°®Àê¡A§N«o¤Î¯¯­«¤§¨BÆJ¡Aª½¦Ü«e«á¨â¦¸­«¶q®t¤p©ó0.005 g¬°¤î¡C

(¤G) ´ú©w¼Ë«~¤§¦Ç¥÷

1.      ±N¸g¨BÆJ(¤@) 4.¤§¼Ë«~¸m©ó800¡Ó50¢J¤§°ª·Å¦Ç¤ÆÄl¤¤±j¼ö¤T¤p®É¡C

2.      ­°§CÄl·Å¦Ü300¢J®É¡A±N¼Ë«~¡]³s©XÁç¡^²¾¤J°®Àê¾¹¤¤§N«o¦Ü«Ç·Å¡A¯¯­«¡C

 

¤ô¤À¡]¢H¡^¡×(W1-W2) / W1

¦Ç¥÷¡]¢H¡^¡×W3 / W1

   ¡@¡@W1¡G °e¤J¯M½c«e¤§¼Ë«~­«¡C

   ¡@¡@W2¡G ¸g105¢J¯M°®«á¤§¼Ë«~­«¡C

   ¡@¡@W3¡G ¸g800¢J°ª·Å¦Ç¤ÆÄl¦Ç¤Æ«á¤§¼Ë«~­«¡C

¥i¿U¥÷¡×100¢H¡Ð¤ô¥÷(¢H)¡Ð¦Ç¥÷(¢H)

(¤T¦¨¤À¤ÀªR)

¦Ç¥÷

¦U¦¨¤À¤§°®°ò¦Ç¥÷Bi¡]¢H¡^¡×

W7i=¦U¦¨¤À¦Ç °®­«

W6i=¦U¦¨¤À°®­«

°®°ò©U§£¦Ç¥÷B¡]¢H¡^¡×

Ai¡×¦Uª«²z²Õ¦¨­«¶q¦Ê¤À²v

Àã°ò©U§£¦Ç¥÷Br¡]¢H¡^¡×

W¡×©U§£¤§¤ô¤À¡]¢H¡^

l Fusing Point of Ash

l Ultimate Analysis

¤¸¯À¤ÀªR: C, H, N, O, S, Cl

¡]§¡¥HÀã°òªí¥Ü¡^

1.   ¥þ¦Û°Ê¤¸¯À¤ÀªR»ö¡G¤ÀªRC, H, N¡QS, Cl¥t¤ÀªR¡C

2.   ºÞª¬¿U¿NÄl(800C)¡G¤ÀªRC, H, S, Cl

a.   ¤ô»]®ð¥ÎµL¤ô´â¤Æ¶t©Î¹L´â»ÄÁâ(Mg(ClO4)2)§l¦¬¡Q¤G®ñ¤ÆºÒ¥ÎĬ¥´¶³¥À(Soda Talc)©Î²B®ñ¤Æ¯Ç§l¦¬¡A¯¯¨ä¼W¥[­«¶q¡C

¤@¡B   ¤èªk·§­n

¤@¯ë¼o±óª«³q¤J¨¬°÷¤§®ñ®ð¡A¨Ï¨ä¦b 800 ¦Ü 850 ¢J ±K³¬¿U¿NºÞ¤¤¥[¼ö¿U¿N¡A¼o±óª«¤¤ªººÒ(C)¡B²B(H)®ñ¤Æ²£¥Í¤G®ñ¤ÆºÒ»P¤ô»]®ð¤À§O³QĬ¥´¥Ûºø¤Î¤ô¤À§l¦¬¾¯§l¦¬¡C¶q´ú§l¦¬¾¯¤§¼W¥[­«¶q¡A§Y±o¤G®ñ¤ÆºÒ»P¤ô¤§²£¥Í¶q¡A¦A¤©¥H´«ºâ¨D¥X¤@¯ë¼o±óª«°®°ò¤¤¤§ºÒ¡B²Bµ¥¤¸¯À¦Ê¤À¤ñ¡C

¤G¡B   ¤zÂZ

©ó¿U¿NºÞ«áºÝ¸m¤J»Èºô¡A¥H¥h°£¼o±óª«¤¤²¸¤Î³¿¤Æª«©Ò³y¦¨°¾®t¡C

¤T¡B   ³]³Æ

 

¥|¡B   °®°ò¼o±óª«¥i¿Uª«¤¤¦U¦¨¤À¤¸¯À¤ÀªR­È­pºâ

¡@¡@C(%) = £GACO2 ¡þ W ¡Ñ 12 ¡þ 44 ¡Ñ 100(%)

¡@¡@H(%) = £GAH2O ¡þ W ¡Ñ 2 ¡þ 18 ¡Ñ 100(%)

¡@C¡GºÒ§t¶q  ¡@¡@¡@¡@H¡G²B§t¶q
£GACO2¡G¤G®ñ¤ÆºÒ§l¦¬¾¯¼W­«(g)¡]§l¦¬²~ ¢» ©M ¢¼ ¤§¼W­«¡^
£GAH2O¡G¤ô¤À§l¦¬¾¯¼W­«(g)¡]§l¦¬²~ ¢¹ ©M ¢º ¤§¼W­«¡^
W
¡G¼Ë«~°®­«(g)

 

b.  ²¸¡A´â¥ÎÂù®ñ¤ô§l¦¬¡A¥H²B®ñ¤Æ¶uºw©w¡]»Ä«×¡^¡A¦A´ú´âÆQ¡C

¤@¡B   ¤èªk·§­n¡G

¤@¯ë¼o±óª«³q¤J¨¬°÷¤§®ñ®ð¡A¨Ï¨ä¦b 800 ¦Ü 850 ¢J ±K³¬¿U¿NºÞ¤¤¥[¼ö¿U¿N¡A¼o±óª«¤¤ªº²¸¡]S¡^¡B´â¡]Cl¡^®ñ¤Æ¦¨»Ä©Ê®ðÅé³Q 3 % ¹L®ñ¤Æ²B¡]H2O2 ¡^·»²G§l¦¬¡C§l¦¬²G©w¶q«á¸gºw©wªk©ÎÂ÷¤l¼hªRªk¤ÀªR§Y±o²¸»Ä®Ú¡]SO42-¡^»P´âÂ÷¤l¡]Cl-¡^²£¥Í¶q¡A¦A¤©¥H´«ºâ¨D¥X¤@¯ë¼o±óª«°®°ò¤¤¤§²¸¡B´âµ¥¤¸¯À¦Ê¤À¤ñ¡C

¤G¡B   ¨BÆJ

(¤@)    ±NºÞª¬¿U¿NÄl¹q·½¶}Ãö¥´¶}¡A¨Ï¨ä·Å«×¹F 800 ¦Ü 850 ¢J ¤§¶¡¡C

(¤G)   ¬°¤F¯Â¤Æ®ñ®ð¡A¤À§O¥HµL¤ô´â¤Æ¶t©ÎµL¤ô¹L´â»ÄÁâ¡BĬ¥´¥Ûºø§l¦¬²~¦êÁp±µ©ó®ñ®ð²~¤Î®ðÅé¬y¶q­p¤§¶¡¡A¥H¥h°£¿û²~®ñ®ð¤¤¤§ºÒ©M²Bªº¤Æ¦Xª«¡A¥¢®Ä®É¦A¤©§ó´«¡C

(¤T)   ±N¨â¤ä¤À§O¸Ë¶ñ 3 % ¹L®ñ¤Æ²B¡]¬ù¤K¤Àº¡¡^ªº§l¦¬²~ ¢¹¡B¢º ¦ê³s«á±µ¤W¾ÉºÞ¡C

(¥|)   ¥´¶}®ñ®ð±±¨î¬y¶q¬ù 1500 mL / min¡C

¤K¡Bµ²ªG³B²z

¤¸¯À§t¶q­pºâ¡G

WS¡]g¡^¡× [SO42-]¡]mg / L¡^¡ÑV¡]L¡^¡þ 1000¡]mg / g¡^¡Ñ32 ¡þ 96

WCl¡]g¡^¡× [Cl-]¡]mg / L¡^ ¡ÑV¡]L¡^ ¡þ 1000¡]mg / g¡^

Si¡]%¡^¡× WSi ¡þ W ¡Ñ100¡]%¡^

Cli¡]%¡^¡× WCli ¡þ W ¡Ñ100¡]%¡^

WS¡G²¸¤¸¯À­«¶q¡]g¡^

WCl¡G´â¤¸¯À­«¶q¡]g¡^

V¡G§l¦¬²GÅé¿n¡]L¡^

[SO42-]¡G¥ÑÂ÷¤l¼hªRªk´ú±o§l¦¬²G¤¤²¸»Ä®Ú¿@«×¡]mg / L¡^

[Cl-]¡G¥Ñºw©wªk©ÎÂ÷¤l¼hªRªk´ú±o§l¦¬²G¤¤´âÂ÷¤l¿@«×¡]mg / L¡^

Si¡G²¸¤¸¯À§t¶q¡]%¡^

Cli¡G´â¤¸¯À§t¶q¡]%¡^

i¡G¤@¯ë¼o±óª«¥i¿Uª«ºØÃþ

W¡G¼Ë«~°®­«¡]g¡^

 

3.   ³Í¤ó´áªk(Kjeldahl Nitrogen)¤ÀªRN (®ò´á+¦³¾÷´á)

4.   ¥i¿U¥÷ - C, H, N, S, Cl = O

l Energy Content (Heating Value)

§Q¥Î¼ö¶q­pBomb Calorimeter¤ÀªR

¤@¡B¤èªk·§­n

±N¼Ë«~¸m¤J¼ö¥d­p¤º¡A¦A¸m©óªþ¦³µ´¼ö¦¡§¨®M¤§¤ô¯D¼Ñ¤¤¡AÂI¤õ¿U¿N«á¡A¼Ë«~©ÒÄÀ©ñ¤§¿U¿N¼ö¡A¥Ñ¥~³ò¤ô¯D¼Ñ§l¦¬¡A¬ö¿ý¤ô¯D¼Ñ¤Wª@¤§·Å«×¡A­¼¤W¤ô¤Î¼ö¥d­p¤ô·í¶q¤§©M¡A­¼¤W¤ô¤§¤ñ¼ö¡A¦A°£¥H¼Ë«~­«¶q¡A§Y¥i¨D±o¼Ë«~¤§¼ö­È¡C

¦UÃþ¼Ë«~°®°òµo¼ö¶qHi (kcal/kg)¡Ñ¼Ë«~­«(kg)¡Ïµo¼ö¸É¥¿­È(kcal)¡×¤Wª@·Å«×¡Ñ¤ô¤ñ¼ö¡Ñ¡]¤ºµ©¤ô­«¡Ï¤ô·í¶q¡^

¤ô·í¶q¡G¼ö¶q­p§l¦¬ªº¼ö¶q´«ºâ¦¨­Y¤z­«¶qªº¤ô§l¦¬¤§¼ö¶q¡A¥Î¤wª¾µo¼ö¶q¤§¼Ð·Ç¼Ë«~­f¥Ò»Ä(Benzoic Acid)¶i¦æ¹êÅç¡A§Y¥i¨D¥X¤ô·í¶q¡C

µo¼ö¸É¥¿­È¡GÂI¤õ¥ÎªºÂ쵸½u»P¥]Âм˫~¥Îªº¶­¥Ö¯È©Ò§tªº¼ö¶q

·Å«×´ú¶q¡G¬f§J°Ò·Å«×­p(Berkman Thermometer)

©U§£¼Ë«~°®°òµo¼ö¶qH (kcal/kg)=

 

Àã°ò°ª¦ìµo¼ö¶qHh=H¡Ñ

Àã°ò§C¦ìµo¼ö¶qHl= Hh ¡V 6 (9 H+W)

6: ¤ô»]µo¼ç¼ö600 kcal/kg¡AH: ²BÀã°ò­«¶q¦Ê¤À¤ñ

µI¤ÆÄl¤¤¤ô¬°®ðºA¡A¼ö¶q­p¤¤¤ô¬°²GºA¡A¤ô¥Ñ®ðºA§N¾®¦Ü²GºAÄÀ©ñ¥X¾®µ²¼ö(»]µo¼ç¼ö)¡C§C¦ìµo¼ö¶q¤~¬OµI¤ÆÄl¤¤©U§£¹ê»Ú¯àÄÀ©ñªº¼ö¶q¡C

 

¥Ñ¤T¦¨¤À¤ÀªR±À¦ôµo¼ö¶qHl= 45 V ¡V 6 W

V: ¥i¿U¥÷¡]¢H¡^(Àã°ò)

45: ÅÖºû¯À(C6H10O5)n¤§°®°òµo¼ö¶q4,500 kcal/kg

¥»¦h¤ó¤T¦¨¤À±À¦ôHl= 44.75 V ¡V 5.8 W + 21.2

¥Ñª«²z²Õ¦¨±À¦ôµo¼ö¶q

¤pªL¤ó±À¦ôHl= (80 R+45 V) ¡Ñ ¡V 6 W

R: ¶ì½¦­«¶q¦Ê¤À¤ñ¡]°®°ò¡^

V: ¶ì½¦¥H¥~¤§¥i¿Uª«­«¶q¦Ê¤À¤ñ¡]°®°ò¡^

Hl= [88.2 R+40.5(G + P)] ¡Ñ ¡V 6 W

R: ¶ì½¦­«¶q¦Ê¤À¤ñ¡]°®°ò¡^

G: ¼p¾l­«¶q¦Ê¤À¤ñ¡AP: ¯ÈÃþ­«¶q¦Ê¤À¤ñ¡]°®°ò¡^

¥Ñ¤¸¯À¤ÀªR±À¦ô

Dulong¦¡

Hl= 81 C + 342.5 (H ¡V O/8) + 22.5 S ¡V 6 (9 H + W)

°²³]¼Ë«~¤¤¤§®ñ¥þ³¡¬°¤Æ¦X¤ôª¬ºA

81: ºÒ¤§°®°òµo¼ö¶q8,100 kcal/kg

342.5: ²B¤§°®°òµo¼ö¶q34,250 kcal/kg¡A¤Æ¦X¤ô¤¤¤§²B¿U¿N®É¤£©ñ¼ö¡A¬GÀ³¦©°£(H : O = 2 : 16¡Aµ²¦X¤ô¤¤¤§²BH = O/8¡AH: ²BÀã°ò­«¶q¦Ê¤À¤ñ)

Scheurer ¡V Kestner ¦¡

Hl= 81 (C ¡V 3O/4) + 342.5 H + 22.5 S + 57¡Ñ3O/4 ¡V 6 (9 H + W)

°²³]¼Ë«~¤¤¤§®ñ¥þ³¡¬°:C=Oª¬ºA

(C ¡V3O/4): ¥HCOª¬ºAµ²¦X¤§ºÒ¿U¿N®É¡A¬GÀ³¦©°£(C : O = 12 : 16¡A  µ²¦X¤§ºÒ C = 3O/4¡AC: ºÒÀã°ò­«¶q¦Ê¤À¤ñ)

57: CO¤§°®°òµo¼ö¶q5,700 kcal/kgC

Steuer ¦¡

Hl=  81 (C ¡V 3O/8) + 57¡Ñ3O/8 + 345 (H ¡V O/16) + 25 S ¡V 6 (9 H + W)

°²³]¼Ë«~¤¤¤§®ñ¤@¥b¬°µ²¦X¤ô¤§ª¬ºA¡A¥t¤@¥b¬°:C=Oª¬ºA

µI¤Æ¦Ç´í¨`¿N´î¶q(Ignition Loss)¡GµI¤Æ«á¦Ç´í¼Ë«~¥H600¢J¿U¿N¤T¤p®É·l¥¢¤§­«¶q¡C¥Î©óµû¦ô¿U¿N®Ä²v¡C

¡]¤@¡^¥þ³sÄò¦¡µI¤Æ³B²z³]¬I¡G
¨C¤é¿U¿N¶q200¤½¾·¥H¤WªÌ¦b5%¥H¤U¡C
¨C¤é¿U¿N¶q¥¼¹F200¤½¾·ªÌ¦b7%¥H¤U¡C
¡]¤G¡^·Ç³sÄò¦¡µI¤Æ³B²z³]¬I¨C¤é¿U¿N¶q40¤½¾·¦Ü180¤½¾·ªÌ¦b7%¥H¤U¡C
¡]¤T¡^¤À§å¶ñ®Æ¦¡µI¤Æ³B²z³]¬I¦b10%¥H¤U¡C
(¤@¯ë¼o±óª«¦^¦¬²M°£³B²z¿ìªk)

 

l Essential Nutrients

C/N, P

4-3 Biological Properties of MSW

Excluding plastic, rubber, & leather, organic fraction can be classified as:

l Water soluble constituents: sugars, starches, amino acids, organic acids.

l Hemicelluloses: 5-, 6-carbon sugars.

l Cellulose: 6-carbon sugars, glucose.

l Fats, oils, & Waxes: ester of alcohol & long-chain fatty acids.

l Lignin.

l Lignocelluloses: combination of lignin & cellulose.

l Proteins: amino acids.

 

1.          Biodegradability of Organics

BF=0.83-0.028 LC

BF: biodegradable fraction expressed on a volatile solids (VS) basis

LC: lignin content of VS (dry basis)

(Table 4-7)

2.          Odor production

H2S, CH3SH.

4-4 Physical, Chemical, & Biological Transformations of Solid Waste

l Physical transformation

(1)     Component separation:

To transform a heterogeneous waste into a number of homogeneous components by manual and mechanical means.

(2)     Mechanical volume reduction:

Densification, to reduce storage & handling costs, shipping costs, transport costs, to increase the useful life of landfill.

(3)     Mechanical size reduction:

Shredding, grinding, milling, to obtain a product that is reasonably uniformly & reduced in size (not necessarily).

l Chemical transformation

Typically involve a change of phase, to reduce the volume, to recovery conversion products.

(1)         Combustion (incineration):

Chemical reaction of O2 with organic materials, with excess air, generation of heat, off gases, ashes (bottom ash, fly ash).

(2)         Pyrolysis (thermal cracking):

Reaction in an oxygen-free atmosphere, into gaseous, liquid, and solid fractions.

a.        Gas: H2, CH4, CO, CO2, others

b.       Tar & oil: acetic acid, acetone, and methanol. (C6H8O)

c.         Char: carbon, inert.

(3)         Gasification:

Partial combustion & pyrolysis:¦P¤@Äl¤º¡A¥H¿U¿N´£¨Ñ¼ö¸Ñ©Ò»Ý¤§¼ö¯à¡C

(4)         Other processes:

Hydrolysis, fermentation.

l Biological transformation

Aerobic or anaerobic reaction

(1)         Composting: (aerobic)

Under controlled conditions (O2, H2O, Temp., Nutrient), organic fraction can be converted to a stable humus-like product in 4 ¡V 6 weeks. (Solid-phase fermentation)

Organic matter + O2 + nutrients à new cells +resistant organic matter (lignin, humus) + CO2 + H2O + NH3 + SO42- + heat

(2)         Anaerobic digestion:

Gas: CO2, CH4, NH3, H2S.

Residuals: digested sludge.

(3)         Others: high-solid anaerobic digestion (Chapter 14).

l Importance of Waste Transformations in Solid Waste Management

 

(1)         Improving efficiency of solid waste management systems

Storage, collection, transportation, treatment, final disposal.

(2)         Recovery of materials for reuse and recycling

(3)         Recovery of conversion products and energy:

a.        Combustion to produce steam and electricity.

b.       Pyrolysis to produce a synthetic fuel.

c.         Gasification to produce a synthetic fuel.

d.       Biological conversion to produce compost.

e.         Digestion to generate methane and humus.