PHYSICAL, CHEMICAL, &
BIOLOGICAL PROPERTIES OF MUNICIPAL SOLID WASTE
4-1 Physical Properties of
MSW
4-2 Chemical Properties of
MSW
4-3 Biological
Properties of MSW
4-4 Physical,
Chemical, & Biological Transformations of Solid Waste
4-1 Physical Properties of
MSW
l Specific Weight
W1:¸Õ¼Ë»P®e¾¹Á`«(kg)
W0:®e¾¹«(kg)
V:®e¾¹Åé¿n(0.1 m3)
l Moisture Content
¤ô¤À¡]¢H¡^¡×
W3¡×°®«
l Particle Size & Size Distribution
l Field Capacity¥Ð¶¡§t¤ô¶q
l Permeability of Compacted Waste
4-2 Chemical Properties of
MSW
l Proximate Analysis
¤ô¤À¡B´§µo¤À¡B©T©wºÒ¡B¦Ç¤À
(¤@) ´ú©w¼Ë«~¤§§t¤ô¥÷
1.
´ú¸Õ«e±N©XÁç¬~²b«á¡A¸m©ó°ª·Å¦Ç¤ÆÄl¤¤¡A¥H1,200¢JªÅ¿N30¤ÀÄÁ¡C
2.
ªÅ¿N«á°§CÄl·Å¦Ü300¢J®É¡A±N©XÁç²¾¦Ü°®Àê¾¹§N«o³Æ¥Î¡A¨Ï¥Î«e¯¯«¡C
3.
¯¯¨ú¾A¶q¤§¼o±óª«¼Ë«~¦Ü0.001 g ¡]¬ù5 ~ 10 g¡^¡A¸m©ó¤Wz¤w¯¯«¤§©XÁ礤¡A¥H105 ¡Ó1¢J¤§¯M½c°®Àê¤G¤p®É¡A¨ú¥X²¾¤J°®Àê¾¹¡A§N«o¦Ü«Ç·Å¡A¯¯«¡C
4.
«ÂÐ¥H¤W°®Àê¡A§N«o¤Î¯¯«¤§¨BÆJ¡Aª½¦Ü«e«á¨â¦¸«¶q®t¤p©ó0.005 g¬°¤î¡C
(¤G) ´ú©w¼Ë«~¤§¦Ç¥÷
1.
±N¸g¨BÆJ(¤@) 4.¤§¼Ë«~¸m©ó800¡Ó50¢J¤§°ª·Å¦Ç¤ÆÄl¤¤±j¼ö¤T¤p®É¡C
2. °§CÄl·Å¦Ü300¢J®É¡A±N¼Ë«~¡]³s©XÁç¡^²¾¤J°®Àê¾¹¤¤§N«o¦Ü«Ç·Å¡A¯¯«¡C
¤ô¤À¡]¢H¡^¡×(W1-W2)
/ W1
¦Ç¥÷¡]¢H¡^¡×W3
/ W1
¡@¡@W1¡G °e¤J¯M½c«e¤§¼Ë«~«¡C
¡@¡@W2¡G ¸g105¢J¯M°®«á¤§¼Ë«~«¡C
¡@¡@W3¡G ¸g800¢J°ª·Å¦Ç¤ÆÄl¦Ç¤Æ«á¤§¼Ë«~«¡C
¥i¿U¥÷¡×100¢H¡Ð¤ô¥÷(¢H)¡Ð¦Ç¥÷(¢H)
(¤T¦¨¤À¤ÀªR)
¦Ç¥÷
¦U¦¨¤À¤§°®°ò¦Ç¥÷Bi¡]¢H¡^¡×
W7i=¦U¦¨¤À¦Ç °®«
W6i=¦U¦¨¤À°®«
°®°ò©U§£¦Ç¥÷B¡]¢H¡^¡×
Ai¡×¦Uª«²z²Õ¦¨«¶q¦Ê¤À²v
Àã°ò©U§£¦Ç¥÷Br¡]¢H¡^¡×
W¡×©U§£¤§¤ô¤À¡]¢H¡^
l Fusing Point of Ash
l Ultimate Analysis
¤¸¯À¤ÀªR: C,
H, N, O, S, Cl
¡]§¡¥HÀã°òªí¥Ü¡^
1.
¥þ¦Û°Ê¤¸¯À¤ÀªR»ö¡G¤ÀªRC, H, N¡QS, Cl¥t¤ÀªR¡C
2.
ºÞª¬¿U¿NÄl(800C)¡G¤ÀªRC, H,
S, Cl
a.
¤ô»]®ð¥ÎµL¤ô´â¤Æ¶t©Î¹L´â»ÄÁâ(Mg(ClO4)2)§l¦¬¡Q¤G®ñ¤ÆºÒ¥ÎĬ¥´¶³¥À(Soda
Talc)©Î²B®ñ¤Æ¯Ç§l¦¬¡A¯¯¨ä¼W¥[«¶q¡C
¡@¡@C(%) = £GACO2 ¡þ W ¡Ñ 12 ¡þ 44 ¡Ñ 100(%)
¡@¡@H(%) = £GAH2O ¡þ W ¡Ñ 2 ¡þ 18 ¡Ñ 100(%)
¡@C¡GºÒ§t¶q ¡@¡@¡@¡@H¡G²B§t¶q
£GACO2¡G¤G®ñ¤ÆºÒ§l¦¬¾¯¼W«(g)¡]§l¦¬²~ ¢» ©M ¢¼ ¤§¼W«¡^
£GAH2O¡G¤ô¤À§l¦¬¾¯¼W«(g)¡]§l¦¬²~ ¢¹ ©M ¢º ¤§¼W«¡^
W¡G¼Ë«~°®«(g)
b. ²¸¡A´â¥ÎÂù®ñ¤ô§l¦¬¡A¥H²B®ñ¤Æ¶uºw©w¡]»Ä«×¡^¡A¦A´ú´âÆQ¡C
WS¡]g¡^¡× [SO42-]¡]mg / L¡^¡ÑV¡]L¡^¡þ 1000¡]mg / g¡^¡Ñ32 ¡þ 96
WCl¡]g¡^¡× [Cl-]¡]mg / L¡^ ¡ÑV¡]L¡^ ¡þ 1000¡]mg / g¡^
Si¡]%¡^¡× WSi ¡þ W ¡Ñ100¡]%¡^
3.
³Í¤ó´áªk(Kjeldahl Nitrogen)¤ÀªRN (®ò´á+¦³¾÷´á)
4.
¥i¿U¥÷ - C, H, N, S, Cl = O
l Energy Content (Heating Value)
§Q¥Î¼ö¶qpBomb Calorimeter¤ÀªR
¦UÃþ¼Ë«~°®°òµo¼ö¶qHi (kcal/kg)¡Ñ¼Ë«~«(kg)¡Ïµo¼ö¸É¥¿È(kcal)¡×¤Wª@·Å«×¡Ñ¤ô¤ñ¼ö¡Ñ¡]¤ºµ©¤ô«¡Ï¤ô·í¶q¡^
¤ô·í¶q¡G¼ö¶qp§l¦¬ªº¼ö¶q´«ºâ¦¨Y¤z«¶qªº¤ô§l¦¬¤§¼ö¶q¡A¥Î¤wª¾µo¼ö¶q¤§¼Ð·Ç¼Ë«~f¥Ò»Ä(Benzoic Acid)¶i¦æ¹êÅç¡A§Y¥i¨D¥X¤ô·í¶q¡C
µo¼ö¸É¥¿È¡GÂI¤õ¥ÎªºÂ쵸½u»P¥]Âм˫~¥Îªº¶¥Ö¯È©Ò§tªº¼ö¶q
·Å«×´ú¶q¡G¬f§J°Ò·Å«×p(Berkman Thermometer)
©U§£¼Ë«~°®°òµo¼ö¶qH (kcal/kg)=
Àã°ò°ª¦ìµo¼ö¶qHh=H¡Ñ
Àã°ò§C¦ìµo¼ö¶qHl=
Hh ¡V 6 (9 H+W)
6: ¤ô»]µo¼ç¼ö600
kcal/kg¡AH: ²BÀã°ò«¶q¦Ê¤À¤ñ
µI¤ÆÄl¤¤¤ô¬°®ðºA¡A¼ö¶qp¤¤¤ô¬°²GºA¡A¤ô¥Ñ®ðºA§N¾®¦Ü²GºAÄÀ©ñ¥X¾®µ²¼ö(»]µo¼ç¼ö)¡C§C¦ìµo¼ö¶q¤~¬OµI¤ÆÄl¤¤©U§£¹ê»Ú¯àÄÀ©ñªº¼ö¶q¡C
¥Ñ¤T¦¨¤À¤ÀªR±À¦ôµo¼ö¶qHl=
45 V ¡V 6 W
V: ¥i¿U¥÷¡]¢H¡^(Àã°ò)
45:
ÅÖºû¯À(C6H10O5)n¤§°®°òµo¼ö¶q4,500 kcal/kg
¥»¦h¤ó¤T¦¨¤À±À¦ôHl=
44.75 V ¡V 5.8 W + 21.2
¥Ñª«²z²Õ¦¨±À¦ôµo¼ö¶q
¤pªL¤ó±À¦ôHl=
(80 R+45 V) ¡Ñ ¡V 6 W
R: ¶ì½¦«¶q¦Ê¤À¤ñ¡]°®°ò¡^
V: ¶ì½¦¥H¥~¤§¥i¿Uª««¶q¦Ê¤À¤ñ¡]°®°ò¡^
Hl= [88.2 R+40.5(G + P)] ¡Ñ ¡V 6 W
R: ¶ì½¦«¶q¦Ê¤À¤ñ¡]°®°ò¡^
G: ¼p¾l«¶q¦Ê¤À¤ñ¡AP: ¯ÈÃþ«¶q¦Ê¤À¤ñ¡]°®°ò¡^
¥Ñ¤¸¯À¤ÀªR±À¦ô
Dulong¦¡
Hl= 81 C + 342.5 (H ¡V O/8) +
22.5 S ¡V 6 (9 H + W)
°²³]¼Ë«~¤¤¤§®ñ¥þ³¡¬°¤Æ¦X¤ôª¬ºA
81:
ºÒ¤§°®°òµo¼ö¶q8,100
kcal/kg
342.5: ²B¤§°®°òµo¼ö¶q34,250 kcal/kg¡A¤Æ¦X¤ô¤¤¤§²B¿U¿N®É¤£©ñ¼ö¡A¬GÀ³¦©°£(H : O = 2 : 16¡Aµ²¦X¤ô¤¤¤§²BH = O/8¡AH: ²BÀã°ò«¶q¦Ê¤À¤ñ)
Scheurer ¡V Kestner ¦¡
Hl=
81 (C ¡V 3O/4) + 342.5 H + 22.5 S + 57¡Ñ3O/4 ¡V 6 (9 H + W)
°²³]¼Ë«~¤¤¤§®ñ¥þ³¡¬°:C=Oª¬ºA
(C ¡V3O/4): ¥HCOª¬ºAµ²¦X¤§ºÒ¿U¿N®É¡A¬GÀ³¦©°£(C : O = 12 : 16¡A µ²¦X¤§ºÒ C = 3O/4¡AC: ºÒÀã°ò«¶q¦Ê¤À¤ñ)
57: CO¤§°®°òµo¼ö¶q5,700 kcal/kgC
Steuer ¦¡
Hl= 81 (C ¡V 3O/8) + 57¡Ñ3O/8 + 345 (H ¡V
O/16) + 25 S ¡V 6 (9 H + W)
°²³]¼Ë«~¤¤¤§®ñ¤@¥b¬°µ²¦X¤ô¤§ª¬ºA¡A¥t¤@¥b¬°:C=Oª¬ºA
µI¤Æ¦Ç´í¨`¿N´î¶q(Ignition Loss)¡GµI¤Æ«á¦Ç´í¼Ë«~¥H600¢J¿U¿N¤T¤p®É·l¥¢¤§«¶q¡C¥Î©óµû¦ô¿U¿N®Ä²v¡C
¡]¤@¡^¥þ³sÄò¦¡µI¤Æ³B²z³]¬I¡G
¨C¤é¿U¿N¶q200¤½¾·¥H¤WªÌ¦b5%¥H¤U¡C
¨C¤é¿U¿N¶q¥¼¹F200¤½¾·ªÌ¦b7%¥H¤U¡C
¡]¤G¡^·Ç³sÄò¦¡µI¤Æ³B²z³]¬I¨C¤é¿U¿N¶q40¤½¾·¦Ü180¤½¾·ªÌ¦b7%¥H¤U¡C
¡]¤T¡^¤À§å¶ñ®Æ¦¡µI¤Æ³B²z³]¬I¦b10%¥H¤U¡C
(¤@¯ë¼o±óª«¦^¦¬²M°£³B²z¿ìªk)
l Essential Nutrients
C/N, P
4-3
Biological Properties of MSW
Excluding plastic, rubber, & leather,
organic fraction can be classified as:
l Water soluble constituents: sugars,
starches, amino acids, organic acids.
l Hemicelluloses: 5-, 6-carbon sugars.
l Cellulose: 6-carbon sugars, glucose.
l Fats, oils, & Waxes: ester of alcohol
& long-chain fatty acids.
l Lignin.
l Lignocelluloses: combination of lignin
& cellulose.
l Proteins: amino acids.
1.
Biodegradability
of Organics
BF=0.83-0.028 LC
BF: biodegradable fraction expressed on a volatile solids (VS)
basis
LC: lignin content of VS (dry basis)
(Table 4-7)
2.
Odor
production
H2S,
CH3SH.
4-4 Physical, Chemical, & Biological
Transformations of Solid Waste
l Physical transformation
(1)
Component
separation:
To transform a heterogeneous waste into a number of
homogeneous components by manual and mechanical means.
(2)
Mechanical
volume reduction:
Densification, to reduce storage & handling
costs, shipping costs, transport costs, to increase the useful life of
landfill.
(3)
Mechanical
size reduction:
Shredding, grinding, milling, to obtain a product
that is reasonably uniformly & reduced in size (not necessarily).
l Chemical transformation
Typically involve a change of phase, to reduce the
volume, to recovery conversion products.
(1)
Combustion
(incineration):
Chemical reaction of O2 with organic
materials, with excess air, generation of heat, off gases, ashes (bottom ash,
fly ash).
(2)
Pyrolysis
(thermal cracking):
Reaction in an oxygen-free atmosphere, into gaseous,
liquid, and solid fractions.
a.
Gas: H2, CH4, CO, CO2, others
b.
Tar & oil: acetic acid, acetone, and methanol.
(C6H8O)
c.
Char: carbon, inert.
(3)
Gasification:
Partial combustion & pyrolysis:¦P¤@Äl¤º¡A¥H¿U¿N´£¨Ñ¼ö¸Ñ©Ò»Ý¤§¼ö¯à¡C
(4)
Other processes:
Hydrolysis, fermentation.
l Biological transformation
Aerobic or anaerobic reaction
(1)
Composting:
(aerobic)
Under controlled conditions (O2, H2O,
Temp., Nutrient), organic fraction can be converted to a stable humus-like
product in 4 ¡V 6 weeks. (Solid-phase fermentation)
Organic matter + O2 +
nutrients à new cells +resistant organic matter
(lignin, humus) + CO2 + H2O + NH3 + SO42-
+ heat
(2)
Anaerobic
digestion:
Gas: CO2, CH4, NH3,
H2S.
Residuals: digested sludge.
(3)
Others:
high-solid anaerobic digestion (Chapter
14).
l Importance of Waste Transformations in Solid Waste
Management
(1)
Improving
efficiency of solid waste management systems
Storage, collection, transportation, treatment,
final disposal.
(2)
Recovery of
materials for reuse and recycling
(3)
Recovery of
conversion products and energy:
a.
Combustion to
produce steam and electricity.
b.
Pyrolysis to produce a synthetic fuel.
c.
Gasification to
produce a synthetic fuel.
d.
Biological
conversion to produce compost.
e.
Digestion to
generate methane and humus.